TMBpro: secondary structure, beta-contact and tertiary structure prediction of transmembrane beta-barrel proteins
نویسندگان
چکیده
MOTIVATION Transmembrane beta-barrel (TMB) proteins are embedded in the outer membranes of mitochondria, Gram-negative bacteria and chloroplasts. These proteins perform critical functions, including active ion-transport and passive nutrient intake. Therefore, there is a need for accurate prediction of secondary and tertiary structure of TMB proteins. Traditional homology modeling methods, however, fail on most TMB proteins since very few non-homologous TMB structures have been determined. Yet, because TMB structures conform to specific construction rules that restrict the conformational space drastically, it should be possible for methods that do not depend on target-template homology to be applied successfully. RESULTS We develop a suite (TMBpro) of specialized predictors for predicting secondary structure (TMBpro-SS), beta-contacts (TMBpro-CON) and tertiary structure (TMBpro-3D) of transmembrane beta-barrel proteins. We compare our results to the recent state-of-the-art predictors transFold and PRED-TMBB using their respective benchmark datasets, and leave-one-out cross-validation. Using the transFold dataset TMBpro predicts secondary structure with per-residue accuracy (Q(2)) of 77.8%, a correlation coefficient of 0.54, and TMBpro predicts beta-contacts with precision of 0.65 and recall of 0.67. Using the PRED-TMBB dataset, TMBpro predicts secondary structure with Q(2) of 88.3% and a correlation coefficient of 0.75. All of these performance results exceed previously published results by 4% or more. Working with the PRED-TMBB dataset, TMBpro predicts the tertiary structure of transmembrane segments with RMSD <6.0 A for 9 of 14 proteins. For 6 of 14 predictions, the RMSD is <5.0 A, with a GDT_TS score greater than 60.0. AVAILABILITY http://www.igb.uci.edu/servers/psss.html.
منابع مشابه
TMBpro: Secondary Structure, β-contact, and Tertiary Structure Prediction of Transmembrane β-Barrel Proteins
Motivation: Transmembrane -barrel (TMB) proteins are embedded in the outer membranes of mitochondria, Gram-negative bacteria, and chloroplasts. These proteins perform critical functions, including active ion-transport and passive nutrient intake. Therefore there is a need for accurate prediction of secondary and tertiary structure of TMB proteins. Traditional homology modeling methods, however,...
متن کاملSequence based methods for the prediction and analysis of the structural topology of transmembrane beta barrel proteins
Transmembrane proteins play a major role in the normal functioning of the cell. Many transmembrane proteins act as a drug target and hence are of utmost importance to the pharmaceutical industry. In spite of the significance of transmembrane proteins, relatively few transmembrane 3D structures are available due to experimental bottlenecks. Due to this, it is imperative to develop novel computat...
متن کاملModeling ensembles of transmembrane beta-barrel proteins.
Transmembrane beta-barrel (TMB) proteins are embedded in the outer membrane of gram-negative bacteria, mitochondria, and chloroplasts. Despite their importance, very few nonhomologous TMB structures have been determined by X-ray diffraction because of the experimental difficulty encountered in crystallizing transmembrane proteins. We introduce the program partiFold to investigate the folding la...
متن کاملBeta barrel trans-membrane proteins: Enhanced prediction using a Bayesian approach
Membrane proteins, which constitute approximately 20% of most genomes, form two main classes: alpha helical and beta barrel transmembrane proteins. Using methods based on Bayesian Networks, a powerful approach for statistical inference, we have sought to address beta-barrel topology prediction. The beta-barrel topology predictor reports individual strand accuracies of 88.6%. The method outlined...
متن کاملtransFold: a web server for predicting the structure and residue contacts of transmembrane beta-barrels
Transmembrane beta-barrel (TMB) proteins are embedded in the outer membrane of Gram-negative bacteria, mitochondria and chloroplasts. The cellular location and functional diversity of beta-barrel outer membrane proteins makes them an important protein class. At the present time, very few non-homologous TMB structures have been determined by X-ray diffraction because of the experimental difficul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioinformatics
دوره 24 4 شماره
صفحات -
تاریخ انتشار 2008